

Fig. 1.6 Campi di frequenza entro cui vengono convenzionalmente identificati infrasuoni, suoni udibili e ultrasuoni. Sebbene gli estremi inferiore e superiore della scala di frequenza riportata sono limitati rispettivamente a 0,1 Hz e a 100 MHz, non è infrequente avere a che fare con infrasuoni di frequenza inferiore a 0,1 Hz, o con ultrasuoni di frequenza superiore a 100 MHz

Fig. 2.5 Schematizzazione del processo di *scattering* subito da un'onda acustica piana nell'attraversare un campione di mezzo disomogeneo, non-uniforme

Fig. 3.4 Schematizzazione della sezione assiale del campo di ultrasuoni generato da un trasduttore piano circolare, il cui diametro sia significativamente più grande della lunghezza d'onda corrispondente alla frequenza a cui opera il trasduttore stesso. Sono rappresentate le regioni in cui il trasduttore genera, rispettivamente, un campo acustico a onde piane e un campo in cui le onde divergono sfericamente

Fig. 3.5 Profilo dell'andamento radiale della pressione acustica lungo la direzione dell'asse *y* (vedi Fig. 3.1), *off-axis*, in corrispondenza dell'ultimo massimo (a), dell'ultimo minimo (b) e del penultimo massimo (c), lungo l'asse *z* di simmetria. *R*, come sempre, è il raggio del trasduttore. I cerchi pieni o anulari forniscono un'indicazione qualitativa del campo di pressione su sezioni parallele alla superficie della sorgente

Fig. 4.2 Propagazione non-lineare di un'onda piana progressiva di ampiezza finita, inizialmente di forma sinusoidale, dove è evidente l'effetto cumulativo della distorsione; (a) forma d'onda, (b) spettro di frequenza

Fig. 5.13 Schema di assemblaggio di un trasduttore piezoelettrico con singolo elemento circolare a facce piane parallele

Fig. 8.1 Relazione tra distanza delle interfacce da una sonda ecografica e ritardo con cui viene ricevuta l'eco corrispondente

Fig. 8.5 Principio di funzionamento del TGC (*Time Gain Compensation*): (a) per effetto della maggiore distanza, e della relativa attenuazione, si ha una progressiva riduzione dell' intensità di eco con il procedere del tempo; (b) se il guadagno viene aumentato al crescere del tempo di risposta in modo da compensare esattamente l'attenuazione allora le intensità di eco diventano indipendenti dalla distanza delle interfacce che le hanno generate (c)

Fig. 9.5 Effetti di distorsione legati alla variazione della velocità di propagazione dell'ultrasuono nei tessuti: schema (a) e relativa immagine ecografica (b)

Fig. 9.6 Schema (a) e immagine (b) ottenuta insonando un *Intra-Uterine Devic*e (IUD), quando l'effetto di curvatura della parete uterina è responsabile della deviazione del fascio sonoro e interpreta erroneamente gli echi generando due immagini distinte

Fig. 9.7 Effetti di riverberazione dei fasci ultrasonori nei tessuti. Nello schema (a) si osserva la presenza di una superficie che «intrappola» il fascio e genera echi ripetuti, che provengono alla sonda in tempi successivi e vengono interpretati dall'ecografo come provenienti da altre superfici più profonde (b)

Fig. 9.9 Schema (a) e immagine (b) dell'artefatto dell'*enhancement*, ossia della maggiore intensità delle parti distali dell'immagine quando viene interposto un mezzo di bassa attenuazione

Fig. 10.5 (a) il segnale viene campionato e segmentato in blocchi di durata *Dt*; (b) ciascun blocco ha un contenuto in frequenze, che può essere valutato con un procedimento di *FFT*; (c) la *FFT* può essere applicata separatamente a ciascun blocco, oppure (d) si fa una parziale sovrapposizione dei blocchi e si esegue la *FFT* sui nuovi blocchi così formati

Fig. 10.6 Se il campionamento è sufficientemente frequente (almeno due punti per periodo) la curva viene ricostruita fedelmente, in caso contrario i punti acquisiti vengono uniti da una sinusoide la cui frequenza è inferiore a quella del segnale

Fig. 11.7 Rappresentazione di una arteria in modalità *color doppler* (a), *power doppler* (b) e selezionando un volume campione di cui si elabora il sonogramma (c) (cortesia dr. G.F. Varetto)

Fig. 11.9 Un medesimo distretto vascolare, composto da un'arteria e una vena, permette di diversificare la direzione di movimento ematico in modalità *color doppler* (a), ma non in modalità *power doppler* (b) (cortesia dr. G.F. Varetto)

Fig. 11.10 L'artefatto dell'*aliasing* si manifesta quando, per una scelta scorretta del *PRF*, alla corretta immagine CD (a) si sostituisce una rappresentazione in cui le zone ad alta velocità vengono codificate con colore opposto (b), come se si trattasse di una zona di inversione. Questo artefatto non si manifesta nella metodica PD (c) (cortesia dr. G.F. Varetto)

Fig. 11.12 L'artefatto della riverberazione, così come la scelta di un valore eccessivo di guadagno, può manifestarsi sotto forma di un mosaico di colori (cortesia dr. G.F. Varetto)

Fig. 11.13 Esempio di buona (a sinistra) e cattiva (a destra) congruenza tra modalità *B-mode* e CD

Fig. 13.6 Schema della formazione della lesione con tecnica high intensity focused ultrasound

Fig. 13.14 Schema di generatore di onda di shock con scarica elettrica e riflettore ellittico

	E33/E0	<i>ε</i> 11/ <i>ε</i> 0	<i>k</i> ₃₁		<i>k</i> ₃₃	<i>d</i> ₃₁ (10 ⁻¹² C	/N) (10 ⁻	d ₃₃ ¹² C/N)
Quarzo	4,5	_	-0,10	0	0,10	-2		2,3
BaTiO₃	1200	1300	-0,1	94	0,48	-58	1	149
PZT-4	1300	1475	-0,3	34	0,70	-123	3 2	289
PZT-5	1700	1730	-0,3	44	0,705	-171		374
PZT-8	1000	1290	-0,30	0	0,64	-97		225
	<i>g</i> ₃₁ (10 ³ m/N) (10-	g₃₃ ³ Vm/N)	<i>Т</i> _с (°С)	tg δ	<i>C</i> ₀ (m/s)	<i>Z</i> 0 (10 ⁶ rayl)	$ ho_0$ (kg/m ³)
Quarzo	-50,0	5	8,0	573	10-4	6600	17,6	2650
BaTiO₃	-5,5	1	4,1	115	0,006	5630	31,3	5550
PZT-4	-11,1	2	6,1	328	0,004	4530	34,0	7500
PZT-5	-11,4	2	4,8	193	0,020	4620	34,6	7500
PZT-8	-10,9	2	25,4	300	-	4530	35,0	7600

Tab. 5.1 Valori tipici di alcune grandezze caratteristiche per il quarzo e per quattro piezoceramiche, di cui tre differenti PZT (dati tratti da: Ensminger, 1988; Cobold, 2007; Vernitron Corporation)

Distanza (cm)	Frequenza (MHz)			
	1	3	5	7,5
1	0,933	0,813	0,708	0,596
2	0,871	0,661	0,501	0,355
3	0,813	0,537	0,355	0,211
4	0,759	0,436	0,251	0,126
5	0,708	0,355	0,178	0,075
6	0,661	0,288	0,126	0,045
7	0,617	0,234	0,089	0,027
8	0,575	0,191	0,063	0,016

Tab. 6.1 Fattore di attenuazione (*derating factor*) calcolato per alcuni valori della frequenza e della distanza. Modello di tessuto biologico omogeneo con α = 0,3 dB·MHz⁻¹·cm⁻¹

Simbolo	Grandezza	Definizione
f	Frequenza centrale.	f = 1/T
п	Numero di cicli.	
PRF	Pulse Repetition Frequency.	
PD	Pulse Duration o durata	PD = nT
	di un impulso completo.	
DF	Duty Factor o frazione	$DF = PD \cdot PRF$
	di tempo in cui il trasduttore	
	emette ultrasuoni.	
SPL	Spatial Pulse Lenght	SPL = cPD
	o lunghezza dell'impulso.	

 Tab. 8.2
 Definizione delle grandezze più utilizzate per descrivere le caratteristiche di emissione delle sonde

Origine	Nome	Effetto sull'immagine
Frequenza e attenuazione	(a) Limitata penetrazione(b) Zona morta	Si perde l'immagine dalla zona più distale (a) o prossimale (b) dell'oggetto insonato.
Dimensione del fascio	Ridotta risoluzione laterale	Vengono confusi i dettagli che si trovano su linee di vista diverse.
Durata del fascio	Ridotta risoluzione assiale	Vengono confusi i dettagli che si trovano su di una stessa linea di vista.
Sistemi di guadagno	Limitazione del contrasto	Vengono confusi segnali di diversa intensità.

Tab. 9.1 Elenco delle principali limitazioni

Origine fisica	Nome	Effetto sull'immagine	Cosa fare?
Velocità del suono non costante nei diversi tessuti attraversati		Distorsione, errata valutazione delle distanze in senso assiale.	Cambiare angolo di insonazione.
Percorso non di minima distanza tra sorgente e riflettore	Artefatti da rifrazione	Duplicazione	Cambiare angolo di insonazione.
L'eco rivelata non proviene dall'ultimo impulso inviato	Artefatti da riflessione	Riverberazione Mirroring down	
Attenuazione non costante nei tessuti attraversati		Enhancing shadowing	Modificare la potenza di emissione.
Effetti di diffusione legati alle dimensioni delle interfacce	Artefatti da diffusione	Speckle	Frame Averaging.
L'eco è prodotta da un fenomeno di riflessione che avviene in direzione perpendicolare rispetto alla superficie della sonda	Grating lobe		Apodization

Tab.9.2 Elenco dei principali artefatti

Acronimo	Significato	Funzione	МІ
HI	Harmonic imaging.	Imaging o Doppler	Basso-
CHI	Contrast harmonic imaging.	utilizzando la frequenza	intermedio
HPD	Harmonic power Doppler.	di seconda armonica prodotta dai mezzi	
dTHI	Differential tissue harmonic imaging.	di contrasto.	
PI	Pulse inversion.	Tecniche di sottrazione	Basso-
PS	Pulse subtraction.	delle armoniche tissutali.	intermedio
CPS	Contrast pulse sequence.		
1.5 HI	1.5 harmonic imaging	Uso della prima superarmonica.	Basso- intermedio
SAE	Stimulated acoustic	Imaging che sfrutta	Alto
	Emission.	i segnali nonlineari	
LOC	Loss of correlation .	transienti prodotti dal	
FEI	Flash echo imaging.	collasso delle microbolle.	

Tab. 12.2 Principali modalità usate con i mezzi di contrasto

Tipo di tessuto mammario	Modulo elastico (5% di precompressione, velocità di deformazione = 10%/s	Modulo elastico (20% di precompressione, velocità di deformazione = 20%/s)
Grasso	19 ±7	20 ±6
Tessuto ghiandolare	33 ±11	57 ±19
Tessuto fibroso	107 ±32	233 ±59
Carcinoma duttale in situ	25 ±4	301 ±58
Carcinoma duttale invasivo	93 ±33	490 ±112

 Tab. 12.3
 Variazione del modulo elastico dei tessuti mammari al variare delle modalità di compressione e deformazione (modificata da Hall, 2003)